Please wait a minute...
?
气候变化研究进展??2019, Vol. 15 Issue (2): 140-149????DOI: 10.12006/j.issn.1673-1719.2018.153
? ?? 气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估
石英,韩振宇(),徐影,周波涛,吴佳
中国气象局国家气候中心,北京100081
Future changes of climate extremes in Xiongan New Area and Jing-Jin-Ji district based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets
Ying SHI,Zhen-Yu HAN(),Ying XU,Bo-Tao ZHOU,Jia WU
National Climate Center, China Meteorological Administration, Beijing 100081, China
下载:? HTML ( 10 ) ? PDF (3599KB)?
输出:? BibTeX | EndNote (RIS) ? ???
摘要?

基于RCP4.5情景下6.25 km高分辨率统计降尺度数据,使用国际上通用的极端气候事件指数,分析雄安新区及整个京津冀地区未来极端气候事件的可能变化。首先对当代模拟结果进行评估,结果表明,集合平均模拟可以较好地再现大部分极端气候事件指数的分布,且对与气温有关的极端气候事件指数模拟效果较好。但也存在一定偏差,特别是对连续干旱日数(CDD)的模拟效果相对较差。集合平均的预估结果表明,未来在全球变暖背景下,雄安新区及整个京津冀地区均表现为极端暖事件增多,极端冷事件减少,连续干旱日数减少,极端强降水事件增多。具体来看,到21世纪末期,日最高气温最高值(TXx)和日最低气温最低值(TNn)在整个区域上都是增加的,大部分地区增加值分别超过2.4℃和3.2℃;夏季日数(SU)和热带夜数(TR)也都表现为增加,但两者的变化分布基本相反,其中SU在山区增加幅度较大,平原地区增加幅度较小,而TR在平原地区的增加值较山区更显着,两个指数未来增加值分别为20~40 d和5~40 d;霜冻日数(FD)和冰冻日数(ID)都表现为减少,减少值分别超过10 d和5 d;与降水有关的极端气候事件指数,CDD、降雨日数(R1mm)和中雨日数(R10mm)的变化均以减少为主,但数值较小,一般都在?10%~0之间;最大5 d降水量(RX5day)、降水强度(SDII)和大雨日数(R20mm)主要表现为增加,增加值一般在0~25%之间。从区域平均的变化来看,与气温有关的极端气候事件指数的变化趋势较为显着,与降水有关的极端气候事件指数变化趋势较小。两个区域对比来看,雄安新区模式间的不确定性更大,反映出模式对较小区域模拟的不足。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石英
韩振宇
徐影
周波涛
吴佳
关键词:? 区域气候模式? 雄安新区? 京津冀地区? 极端事件? ??
Abstract:?

Future changes of climate extremes in the 21st century over Xiongan New Area and Jing-Jin-Ji district were investigated based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets, which were produced using the observation of CLDAS, five sets of regional climate change simulations by RegCM4.4, and statistical downscaling with quantile mapping. Of that, the RegCM4.4 simulations were conducted over East Asia under RCP4.5 scenario driven by five different CMIP5 global climate models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, MPI-ESM-MR and NorESM1-M. Validations of the present climate show that the multi-model ensemble mean can well reproduce the spatial distribution of most climate extremes, and better performance can be found in the temperature-related climate extremes. However, some biases can also be observed, especially for the consecutive drought days (CDD). In the context of global warming, increased extreme warm events, decreased extreme cold events and consecutive drought days and increased extreme heavy precipitation events are projected in Xiongan New Area and the whole Jing-Jin-Ji district. In specific, increased TXx (Maximum value of daily maximum temperature) and TNn (Minimum value of daily minimum temperature) can be found, with the value exceeding 2.4℃ and 3.2℃, respectively. More pronounced increase of SU (Number of summer days) over the mountainous areas compared with the plain is observed, while greater increase of TR (Number of tropical nights) is found over the plain. The increase of SU and TR are in the range of 20 ? 40 d and5 ? 40 d, respectively. Both the FD (Number of frost days) and ID (Number of icing days) will decrease, with the decline above 10 d and 5 d, respectively. Precipitation-related climate extremes including CDD, R1mm (Annual count of days when daily precipitation≥1mm) and R10mm (Annual count of days when daily precipitation≥10 mm) are mainly on decrease with small values of ?10% ? 0 while increase of RX5day (Maximum consecutive 5-day precipitation), SDII (Simple precipitation intensity index) and R20mm (Annual count of days when daily precipitation≥20 mm) are found in most areas with the values in the range of 0 ? 25%. Regional mean changes show that the linear trends are more significantly in temperature-related climate extremes compared with those in precipitation-related climate extremes. Comparing the two regions, greater uncertainty of the simulations in Xiongan New Area can be found, which indicates the deficiency of the model in local scale areas.

Key words:? Regional climate model ?? Xiongan New Area ?? Jing-Jin-Ji district ?? Climate extremes
收稿日期:? 2018-11-02 ???? 修回日期:? 2018-12-07 ???? ???? 出版日期:? 2019-03-30 ???? 发布日期:? 2019-03-30 ???? 期的出版日期:? 2019-03-30
基金资助:?国家重点研发计划(2018YFA0606301,2017YFA0605002);国家自然科学基金项目(41805063,41375104)
作者简介:? 石英,女,副研究员, shiying@cma.cn
引用本文:? ??
石英,韩振宇,徐影,周波涛,吴佳. 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估[J]. 气候变化研究进展, 2019, 15(2): 140-149.
Ying SHI,Zhen-Yu HAN,Ying XU,Bo-Tao ZHOU,Jia WU. Future changes of climate extremes in Xiongan New Area and Jing-Jin-Ji district based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets. Climate Change Research, 2019, 15(2): 140-149.
链接本文: ?
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.153 ?或???? ???? http://www.climatechange.cn/CN/Y2019/V15/I2/140
指数 定义 单位
日最高气温最高值(TXx) 每年日最高气温的最大值
日最低气温最低值(TNn) 每年日最低气温的最小值
夏季日数(SU) 每年日最高气温>25℃的全部天数 d
热带夜数(TR) 每年日最低气温>20℃的全部天数 d
霜冻日数(FD) 每年日最低气温<0℃的全部天数 d
冰冻日数(ID) 每年日最高气温<0℃的全部天数 d
连续干旱日数(CDD) 每年最长连续无降水日数 d
最大5 d降水量(RX5day) 每年最大的连续5 d降水量 mm
降水强度(SDII) 年降水量与降水日数的比值 mm/d
降雨日数(R1mm 每年日降水量≥1 mm的天数 d
中雨日数(R10mm 每年日降水量≥10 mm的天数 d
大雨日数(R20mm 每年日降水量≥20 mm的天数 d
表1??极端气候事件指数定义
图1??集合平均模拟的多年平均TXx、TNn、SU、TR、FD和ID与观测的差
图2??集合平均模拟的多年平均CDD、RX5day、SDII、R1mm、R10mm和R20mm与观测的相对误差
图3??集合平均模拟的RCP4.5情景下21世纪末期(2079—2098年)TXx、TNn、SU、TR、FD和ID的变化(相对于1986—2005年)
指数 雄安新区 京津冀地区 指数 雄安新区 京津冀地区
TXx/℃ 2.72 2.72 CDD/% ?8.6 ?5.1
TNn/℃ 3.51 3.52 RX5day/% 4.1 6.6
SU/d 23 27 SDII/% 2.4 2.6
TR/d 34 25 R1mm/% ?1.7 ?1.4
FD/d ?16 ?16 R10mm/% ?4.6 ?2.1
ID/d ?10 ?12 R20mm/% 3.8 2.0
表2??RCP4.5情景下雄安新区和京津冀地区区域平均的21世纪末期(2079—2098年)极端事件的变化(相对于1986—2005年)
图4??集合平均模拟的RCP4.5情景下21世纪(2006—2098年)雄安新区和京津冀地区与气温有关的极端气候事件指数区域平均的变化(相对于1986—2005年)
图5??同图3,但为与降水相关的极端气候事件指数CDD、RX5day、SDII、R1mm、R10mm和R20mm的变化(相对于1986—2005年)
图6??同图4,但为与降水有关的极端气候事件指数区域平均的变化(相对于1986—2005年)
[1] Taylor K E, Stouffer B J, Meehl G A . An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012,93:485-498
doi: 10.1175/BAMS-D-11-00094.1
[2] IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation [M]. Cambridge: Cambridge University Press, 2012: 582
[3] 秦大河 . 中国极端天气气候事件和灾害风险管理与适应国家评估报告(精华版)[M]. 北京: 科学出版社, 2015: 109
[4] 徐影 . 中国未来极端气候事件变化预估图集[M]. 北京: 气象出版社, 2015: 175
[5] 徐影, 张冰, 周波涛 , 等. 基于CMIP5模式的中国地区未来洪涝灾害风险变化预估[J]. 气候变化研究进展, 2014,10(4):268-275
doi: 10.3969/j.issn.1673-1719.2014.04.007
[6] Gao X J, Zhao Z C, Ding Y H , et al. Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Advances in Atmospheric Sciences, 2001,18(6):1224-1230
doi: 10.1007/s00376-001-0036-y
[7] Zhou T J, Li Z X . Simulation of the East Asian summer monsoon by using a variable resolution atmospheric GCM[J]. Climate Dynamics, 2002,19:167-180
doi: 10.1007/s00382-001-0214-8
[8] Xu Y, Gao X J, Giorgi F . Upgrades to the REA method for producing probabilistic climate change predictions[J]. Climate Research, 2010,41:61-81
doi: 10.3354/cr00835
[9] Xu Y, Wu J, Shi Y , et al. Change in extreme climate events over China based on CMIP[J]. Atmospheric and Oceanic Science Letters, 2015,8:185-192
doi: 10.3878/AOSL20150006
[10] Zhou T J, Yu R C . Twentieth century surface air temperature over China and the globe simulated by coupled climate models[J]. Journal of Climate, 2006,19:5843-5858
doi: 10.1175/JCLI3952.1
[11] Gao X J, Shi Y, Song R Y , et al. Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM[J]. Meteorology and Atmospheric Physics, 2008,100(1):73-86
doi: 10.1007/s00703-008-0296-5
[12] Gao X J, Shi Y, Zhang D F , et al. Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations[J]. Climate Research, 2012,52(1):213-226
doi: 10.3354/cr01084
[13] Ji Z M, Kang S C . Evaluation of extreme climate events using a regional climate model for China[J]. International Journal of Climatology, 2015,35:888-902
doi: 10.1002/joc.4024
[14] 刘伟东, 尤焕苓, 孙丹 . 1961—2010年京津冀及其周边区域温度日较差变化特征[J]. 气候与环境研究, 2016,21(2):167-174
doi: 10.3878/j.issn.1006-9585.2015.15117
[15] Mei C, Liu J H, Chen M T , et al. Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 1960-2013)[J]. Quaternary International, 2018,476:1-13
doi: 10.1016/j.quaint.2018.03.008
[16] Jiang R G, Yu X, Xie J C , et al. Recent changes in daily climate extremes in a serious water shortage metropolitan region, a case study in Jing-Jin-Ji of China[J]. Theoretical Applied Climatology, 2018,134:565-584
doi: 10.1007/s00704-017-2293-4
[17] 闵晶晶, 曹晓钟, 段宇辉 , 等. 近30年京津冀地区冰雹的气候特征和突变分析[J]. 气象, 2012,38(2):189-196
[18] Qian C, Cao L J . Linear trends in mean and extreme temperature in Xiongan New Area, China[J]. Atmospheric and Oceanic Science Letters, 2018,11(3):246-254
doi: 10.1080/16742834.2018.1422677
[19] 吴婕, 高学杰, 徐影 . RegCM4对雄安及周边区域气候变化的集合预估[J]. 大气科学, 2018,42(3):696-705
[20] Han Z Y, Shi Y, Wu J , et al. High resolution combined statistical and dynamical downscaling for multi-variables in the Beijing-Tianjin-Hebei region of China[J]. Submitted to International Journal of Climatology, 2018
[21] Giorgi F, Coppola E, Solmon F , et al. RegCM4: model description and illustrative basic performance over selected CORDEX domains[J]. Climate Research, 2012,52:7-29
doi: 10.3354/cr01018
[22] Giorgi F, Jones C, Asrar G . Addressing climate information needs at the regional level: the CORDEX framework[J]. WMO Bulletin, 2009,58:175-183
[23] Han Z Y, Zhou B T, Xu Y , et al. Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations[J]. Atmospheric Chemistry and Physics, 2017,17(16):10109-10123
doi: 10.5194/acp-17-10109-2017
[24] Gao X J, Wu J, Shi Y , et al. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations[J]. Atmospheric and Oceanic Science Letters, 2018. DOI: 10.1080/16742834.2018.147158
doi: 10.1080/16742834.2018.147158
[25] Shi Y, Wang G L, Gao X J . Role of resolution in regional climate change projections over China[J]. Climate Dynamics, 2018,51:2375-2396
doi: 10.1007/s00382-017-4018-x
[26] 童尧, 高学杰, 韩振宇 , 等. 基于RegCM4的中国区域日尺度降水模拟误差订正[J]. 大气科学, 2017,41(6):1156-1166
[27] 韩振宇, 童尧, 高学杰 , 等. 分位数映射法在RegCM4中国气温模拟订正中的应用[J]. 气候变化研究进展, 2018,14(4):331-340
doi: 10.12006/j.issn.1673-1719.2017.156
[28] Cannon A J, Sobie S R, Murdock T Q . Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?[J]. Journal of Climate, 2015,28(17):6938-6959
doi: 10.1175/JCLI-D-14-00754.1
[29] Shi C X, Xie Z H, Qian H , et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. Science China: Earth Sciences, 2011,54:1430-1440
doi: 10.1007/s11430-010-4160-3
[30] Shi C X, Jiang L P, Zhang T , , et al. Status. Status and plans of CMA Land Data Assimilation System (CLDAS) project [C]. EGU General Assembly Conference Abstracts, 2014, 16, EGU2014-5671
[31] Zhang X B, Alexander L, Hegerl G C , et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. WIREs Climate Change, 2011,2:851-870
doi: 10.1002/wcc.147
[1] 韩振宇,童尧,高学杰,徐影. 分位数映射法在RegCM4中国气温模拟订正中的应用[J]. 气候变化研究进展, 2018, 14(4): 331-340.
[2] 徐经纬,徐 敏,蒋 熹,ArmelleReca C. Remedio,Dmitry V. Sein,Nikolay Koldunov,Daniela Jac. 区域气候模式REMO对中国气温和降水模拟能力的评估[J]. 气候变化研究进展, 2016, 12(4): 286-293.
[3] 陶辉 黄金龙 翟建青 赖锡军. 长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J]. 气候变化研究进展, 2013, 9(4): 246-251.
[4] 吴佳 高学杰 石英. 中国20年一遇气温和降水极值变化的高分辨率模拟[J]. 气候变化研究进展, 2012, 8(4): 243-249.
[5] 尤莉 戴新刚 张宇. 1961—2008年内蒙古降水极端事件分析[J]. 气候变化研究进展, 2010, 6(06): 411-416.
[6] 石英;高学杰;Fillipo Giorgi;宋瑞艳;吴佳;董文杰. 全球变暖背景下中国区域不同强度降水事件变化的高分辨率数值模拟[J]. 气候变化研究进展, 2010, 6(03): 164-169.
[7] 杨红龙;许吟隆;张镭;潘婕;陶生才. SRES A2情景下中国区域21世纪末平均和极端气候变化的模拟[J]. 气候变化研究进展, 2010, 6(03): 157-163.
[8] 徐雨晴 苗秋菊 沈永平. 2008年:气候持续变暖,极端事件频发[J]. 气候变化研究进展, 2009, 05(01): 56-60.
[9] 宋瑞艳 高学杰 石英 张冬峰 张喜娃. 未来我国南方低温雨雪冰冻灾害变化的数值模拟[J]. 气候变化研究进展, 2008, 4(006): 352-356.
[10] 田红 许吟隆 林而达. 温室效应引起的江淮流域气候变化预估[J]. 气候变化研究进展, 2008, 4(006): 357-362.
[11] 陈晓光 D.Conway 陈晓娟 郑广芬. 1961-2005年宁夏极端降水事件变化趋势分析[J]. 气候变化研究进展, 2008, 4(003): 156-160.
[12] 高学杰. 中国地区极端事件预估研究[J]. 气候变化研究进展, 2007, 03(03): 162-166.
[13] 丁一汇;任国玉;石广玉;宫鹏;郑循华;翟盘茂;张德二;赵宗慈;王绍武;王会军;罗勇;陈亮;高学杰;戴晓苏. 气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J]. 气候变化研究进展, 2006, 02(01): 3-08.
[14] 张冬峰;高学杰;赵宗慈;Jeremy S. PAL;Filippo GIORGI. RegCM3 区域气候模式对中国气候的模拟[J]. 气候变化研究进展, 2005, 01(03): 119-121.
[15] 许吟隆;黄晓莹;张勇;林万涛;林而达. 中国21世纪气候变化情景的统计分析[J]. 气候变化研究进展, 2005, 01(02): 80-83.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao?Guoliang;Zhang?Xiaoye;?Wang?Yaqiang;et al.. Inventory?of?Black?Carbon?Emission?from?China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu?Xiaobin;Lin?Weili;?Wang?Tao;et al.. Long-term?Trend?of?Tropospheric?Ozone?over?the?Yangtze?Delta?Region?of?China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao?Qingxian;?Du?Wupeng;?Lu?Shiqing;et al.. Methane?Emission?from?Municipal?Solid?Waste?Treatments?in?China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

? Shared ??
? Discussed ??
京ICP备11008704号-4
版权所有 ? 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn