Please wait a minute...
?
气候变化研究进展??2019, Vol. 15 Issue (2): 150-157????DOI: 10.12006/j.issn.1673-1719.2018.122
? ?? 气候变化影响 本期目录 | 过刊浏览 | 高级检索 |
多年冻土对青藏高原草地生态承载力的贡献研究
方一平1,2,朱付彪1,3,宜树华4,邱孝枰1,3,丁永建2,5,6
1 中国科学院水利部成都山地灾害与环境研究所,成都 610041
2 中国科学院大学资源与环境学院,北京 100049
3 中国科学院大学,北京 100049
4 中国科学院西北生态环境资源研究院,兰州 730000
5 中国科学院寒区旱区环境与工程研究所冰冻圈科学重点实验室,兰州 730000
6 中国科学院寒区旱区环境与工程研究所内陆河流域生态水文重点实验室,兰州 730000
Contribution of permafrost to grassland ecological carrying capacity in the Qinghai-Tibetan Plateau
Yi-Ping FANG1,2,Fu-Biao ZHU1,3,Shu-Hua YI4,Xiao-Ping QIU1,3,Yong-Jian DING2,5,6
1 Institute of Mountain Hazards & Environment, Chinese Academy of Sciences, Chengdu 610041, China;
2 College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
5 State Key Laboratory of Cryospheric Science, Cold & Arid Regions Environment & Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou 730000, China;
6 Key of Eco-hydrology of Inland River Basin CAREERI, CAS, Lanzhou 730000, China;
下载:? HTML ( 6 ) ? PDF (1351KB)?
输出:? BibTeX | EndNote (RIS) ? ???
摘要?

草地生态系统是一个复杂的社会、经济、生态系统,多年冻土作为高寒草地生态系统结构和功能维系的重要因素,是客观刻画高寒草地生态承载力不容忽视的重要方面。文中采用结构动力学方法,从草地质量、草地干预、草地潜力、草地压力4个维度建立高寒草地生态承载力结构动力学模型,分析青藏高原多年冻土区草地生态承载力的变化以及主要结构要素,量化多年冻土变化对青藏高原高寒草地生态承载力的贡献率,结果表明:(1)多年冻土区草地生态承载力呈增加趋势,尤其是1998年以后上升显着,这主要归因于草地生长季节降水增加、气温升高、净初级生产力增幅驱动以及生态保护工程建设的共同作用。(2)多年冻土活动层厚度变化与草地生态承载力呈负相关,多年冻土活动层厚度对草地生态承载力的贡献率约为10%,即多年冻土活动层厚度每增加1个单位,将导致草地生态承载力下降0.1个单位。由于青藏高原空间差异显着,加之气候变化的不确定性,这一贡献水平只是一个粗略的参照值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方一平
朱付彪
宜树华
邱孝枰
丁永建
关键词:? 草地生态承载力? 多年冻土? 多年冻土活动层厚度? 结构动力学? 青藏高原? ??
Abstract:?

Grassland ecosystem is a complex social-ecological system. Permafrost, as an important factor to maintain the structure and function of alpine grassland ecosystem, is an important aspect to describe the ecological carrying capacity of alpine grassland objectively. The impact of permafrost on the ecological carrying capacity of alpine grassland is poorly understood. In this study, using the structural dynamics method, we established a numerical model to estimate the ecological carrying capacity of alpine grassland. Variation of the grassland ecological carrying capacity of the permafrost regions of the Qinghai-Tibetan Plateau (QTP) was analyzed, while the contribution of the permafrost active layer to the ecological carrying capacity of alpine grassland was also quantified. Results show that the ecological carrying capacity of alpine grassland in permafrost regions displayed an increasing trend, especially after 1998, due to increases of precipitation, air temperature, net primary productivity during growing season of grassland, and the establishment of ecological protection projects. The thickness variation of permafrost active layer is negatively correlated with ecological carrying capacity of alpine grassland. The mean contribution of permafrost active thickness to the ecological carrying capacity of alpine grassland was 10% in the QTP during 1980?2013. That is, for every 1 unit increase in the thickness of the permafrost active layer, the ecological carrying capacity of the alpine grassland will be reduced by 0.1 units. Owing to the significant spatial differences over the QTP and the uncertainty of climate change, this result is only a rough estimate of role of permafrost in the ecological carrying capacity.

Key words:? Ecological carrying capacity ?? Permafrost ?? Thickness of permafrost active layer ?? Structural dynamics ?? Qinghai-Tibetan Plateau (QTP)
收稿日期:? 2018-09-06 ???? 修回日期:? 2018-10-22 ???? ???? 出版日期:? 2019-03-30 ???? 发布日期:? 2019-03-30 ???? 期的出版日期:? 2019-03-30
基金资助:?国家自然科学基金项目(41571523,41661144038);国家重点基础研究发展计划项目(9732013CBA01808);国家科技支撑课题(2014BAC05B01)
作者简介:? 方一平,男,研究员, ypfang@imde.ac.cn
引用本文:? ??
方一平,朱付彪,宜树华,邱孝枰,丁永建. 多年冻土对青藏高原草地生态承载力的贡献研究[J]. 气候变化研究进展, 2019, 15(2): 150-157.
Yi-Ping FANG,Fu-Biao ZHU,Shu-Hua YI,Xiao-Ping QIU,Yong-Jian DING. Contribution of permafrost to grassland ecological carrying capacity in the Qinghai-Tibetan Plateau. Climate Change Research, 2019, 15(2): 150-157.
链接本文: ?
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.122 ?或???? ???? http://www.climatechange.cn/CN/Y2019/V15/I2/150
图1??草地生态承载力及其关联要素的动态变化
图2??草地生态系统外部压力及其关联要素的动态变化
[1] David G S, Carvalho E D, Lemos D , et al. Ecological carrying capacity for intensive tilapia (Oreochromisniloticus) cage aquaculture in a large hydro electrical reservoir in southeastern Brazil[J]. Aquacultural Engineering, 2015,66:30-40
doi: 10.1016/j.aquaeng.2015.02.003
[2] Costanza R . Economic growth, carrying capacity, and the environment[J]. Ecological Economics, 1995,15(2):89-90
doi: 10.1016/0921-8009(95)00074-7
[3] Daily G C. Nature’s services: societal dependence on natural ecosystems [M]. Washington DC: Island Press, 1997
[4] Graymore M L M, Sipe N G, Rickson R E . Sustaining human carrying capacity: a tool for regional sustainability assessment[J]. Ecological Economics, 2010 ( 69):459-468
doi: 10.1016/j.ecolecon.2009.08.016
[5] Arrow K, Bolin B, Costanza R , et al. Economic growth, carrying capacity, and the environment[J]. Ecological Economics, 1995,15(2):91-95
doi: 10.1017/S1355770X00000413 pmid: 17756719
[6] Seidl I, Tisdell C A . Carrying capacity reconsidered: from Malthus’s population theory to cultural carrying capacity[J]. Ecological Economics, 1999,31:395-408
doi: 10.1016/S0921-8009(99)00063-4
[7] Prato T . Fuzzy adaptive management of social and ecological carrying capacities for protected areas[J]. Journal of Environmental Management, 2009,90:2551-2557
doi: 10.1016/j.jenvman.2009.01.015 pmid: 19233541
[8] Rajaram T, Das A . Screening for EIA in India: enhancing effectiveness through ecological carrying capacity approach[J]. Journal of Environmental Management, 2011 ( 92):140-148
doi: 10.1016/j.jenvman.2010.08.024 pmid: 20869160
[9] Odum E P . Basic ecology[M]. Saunders, Philadelphia, 1983
[10] Smaal A C, Prins T C, Dankers N , et al. Minimum requirements for modelling bivalve carrying[J]. Aquatic Ecology, 1998,31:423-428
doi: 10.1023/A:1009947627828
[11] Hudak A T . Rangeland mismanagement in South Africa: failure to apply ecological knowledge[J]. Human Ecology, 1999,27(1):55-78
doi: 10.1023/A:1018705300730
[12] Bailey J A . Principles of wildlife management[M]. New York: John Wiley & Sons, 1984
[13] 杨志峰, 隋欣 . 基于生态系统健康的生态承载力评价[J]. 环境科学学报, 2005,25(5):586-594
doi: 10.3321/j.issn:0253-2468.2005.05.004
[14] 杨贤智 . 环境管理学[M]. 北京: 高等教育出版社, 1990: 150-155
[15] 张传国, 方创琳, 全华 . 干旱区绿洲承载力研究的全新审视与展望[J]. 资源科学, 2002,24(2):42-47
doi: 10.3321/j.issn:1007-7588.2002.02.009
[16] 程国栋 . 承载力概念的演变及西北水资源承载力的应用框架[J]. 冰川冻土, 2002,24(4):361-367
doi: 10.3969/j.issn.1000-0240.2002.04.003
[17] 王中根, 夏军 . 区域生态环境承载力的量化方法研究[J]. 长江职工大学学报, 1999,16(4):9-12
[18] 高吉喜 . 可持续发展理论探讨: 生态承载力理论、方法与应用[M]. 北京: 中国环境科学出版社, 2001: 12-28
[19] 王家骥, 姚小红, 李京荣 . 黑河流域生态承载力估测[J]. 环境科学研究, 2000,13(2):44-48
doi: 10.3321/j.issn:1001-6929.2000.02.013
[20] Cheng J Y, Zhou K, Chen D , et al. Evaluation and analysis of provincial differences in resources and environment carrying capacity in China[J]. Chinese Geographical Science, 2016,26(4):539-549
doi: 10.1007/s11769-015-0794-6
[21] Fang C L, Liu X L . Comprehensive measurement for carrying capacity of resources and environment of city clusters in central China[J]. Chinese Geographical Science, 2010,20(3):281-288
doi: 10.1007/s11769-010-0281-z
[22] Peng J, Du Y Y, Liu Y X , et al. How to assess urban development potential in mountain areas? An approach of ecological carrying capacity in the view of coupled human and natural[J]. Ecological Indicators, 2016,60:1017-1030
doi: 10.1016/j.ecolind.2015.09.008
[23] 钟茂初 . 如何表征区域生态承载力与生态环境质量?兼论以胡焕庸线生态承载力涵义重新划分东中西部[J]. 中国地质大学学报: 社会科学版, 2016,16(1):1-9
[24] Ding L, Chen K L, Cheng S G , et al. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: a case study of East Lake in Wuhan[J]. Physics and Chemistry of the Earth, 2015 ( 89-90):104-113
doi: 10.1016/j.pce.2015.08.004
[25] 焦雯, 闵庆文, 李文华 , 等. 基于ESEF的水生态承载力:理论、模型与应用[J]. 应用生态学报, 2015,26(4) : 1041-1048
[26] Zhang Z, Lu W X, Zhao Y , et al. Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin province in China based on system dynamics and analytic hierarchy process[J]. Ecological Modelling, 2014 ( 275):9-21
[27] Wang S, Xu L, Yang F L , et al. Assessment of water ecological carrying capacity under the two policies in Tieling city on the basis of the integrated system dynamics model[J]. Science of the Total Environment, 2014 ( 472):1070-1081
doi: 10.1016/j.scitotenv.2013.11.115 pmid: 24361570
[28] Scoones I . Economic and ecological carrying capacity applications to pastoral systems in Zimbabwe[M] //Barbier E B. Economics and ecology: new frontiers and sustainable development. London: Chapman & Hall, 1993: 96-117
[29] Fang Y P, Qin D H, Ding Y J , et al. The impacts of permafrost change on NPP and implications: a case of the source regions of Yangtze and Yellow Rivers[J]. Journal of Mountain Science, 2011,8(3):437-447
doi: 10.1007/s11629-011-1004-3
[30] 施开放, 刁承泰, 孙秀锋 , 等. 基于耕地生态足迹的重庆市耕地生态承载力供需平衡研究[J]. 生态学报, 2013,33(6):1872-1880
doi: 10.5846/stxb201211231662
[31] Wei C, Dai X Y, Ye S F , et al. Prediction analysis model of integrated carrying capacity using set pair analysis[J]. Ocean & Coastal Management, 2016,120:39-48
[32] Cuadra M, Bjorklund J . Assessment of economic and ecological carrying capacity of agricultural crops in Nicaragua[J]. Ecological Indicators, 2007,7:133-149
doi: 10.1016/j.ecolind.2005.11.003
[33] Liu D, Feng Z M, Yang Y Z , et al. Spatial patterns of ecological carrying capacity supply-demand balance in China at county level[J]. Journal of Geography Science, 2011,21(5):833-844
doi: 10.1007/s11442-011-0883-0
[34] Yue D X . RS & GIS-based spatial analysis on ecological carrying capacity pattern of Northwest China: does supply meet demand?[J]. Quaternary International, 2012: 279-280, 551. DOI: 10.1016/j.quaint.2012.08.1945
doi: 10.1016/j.quaint.2012.08.1945
[35] Jiang W M, Gibbs M T . Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model[J]. Aquaculture, 2005,244:171-185
doi: 10.1016/j.aquaculture.2004.11.050
[36] Byron C, Bengtso D, Costa-Pierce B , et al. Integrating science into management: ecological carrying capacity of bivalve shellfish aquaculture[J]. Marine Policy, 2011,35:363-370
doi: 10.1016/j.marpol.2010.10.016
[37] Byron C, Link J, Costa-Pierce B , et al. Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island[J]. Ecological Modelling, 2011,222:1743-1755
doi: 10.1016/j.ecolmodel.2011.03.010
[38] Mckindsey C W, Thetmeyer H, Landry T , et al. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 2006,26(2):451-462
doi: 10.1016/j.aquaculture.2006.06.044
[39] Thapa G B, Paudel G S . Evaluation of the livestock carrying capacity of land resources in the hills of Nepal based on total digestive nutrient analysis[J]. Agriculture, Ecosystems and Environment, 2000,78:223-235
doi: 10.1016/S0167-8809(99)00128-0
[40] Yu L, Zhou L, Liu W , et al. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China[J]. Pedosphere, 2010,20(3):342-351
doi: 10.1016/S1002-0160(10)60023-9
[41] Zhang J P, Zhang L B, Liu W L , et al. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China[J]. Journal of Geography Science, 2014,24(2):303-312
doi: 10.1007/s11442-014-1089-z
[42] 刘东霞, 张兵兵, 卢欣石 . 草地生态承载力研究进展及展望[J]. 中国草地学报, 2007,29(1):91-96
doi: 10.3321/j.issn:1673-5021.2007.01.017
[43] 孙鸿烈, 郑度, 姚檀栋 , 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012,67(1):3-12
doi: 10.11821/xb201201001
[44] 焦世晖, 王凌越, 刘耕年 . 全球变暖背景下青藏高原多年冻土分布变化预测[J]. 北京大学学报: 自然科学版, 2016,52(2):249-256
doi: 10.13209/j.0479-8023.2015.112
[45] 张镱锂, 祁威, 周才平 , 等. 青藏高原高寒草地净初级生产力(NPP)时空分异[J]. 地理学报, 2013,68(9):1197-1211
[46] 邹经湘, 于开平 . 结构动力学(第二版)[M]. 哈尔滨: 哈尔滨工业大学出版社, 2009
[47] Fang Y P, Zhu F B, Qiu X P , et al. Effects of natural disasters on livelihood resilience of rural residents in Sichuan[J]. Habitat International, 2018,76:19-28
doi: 10.1016/j.habitatint.2018.05.004
[48] Scazzieri R . Structural dynamics and evolutionary change[J]. Structural Change and Economic Dynamics, 2018. DOI: 10.1016/j.strueco.2018.03.007
doi: 10.1016/j.strueco.2018.03.007
[49] Kraus M K, Park J W . The structural dynamics of social class[J]. Current Opinion in Psychology, 2017,18:55-60
doi: 10.1016/j.copsyc.2017.07.029 pmid: 28830036
[50] Arena R, Porta P L. Introduction: structural dynamics and contemporary growth theory [M] //Arena R, Porta P L. Structural dynamics and economic growth. Cambridge: Cambridge University Press, 2012: 1-33
[51] Yi S, Wang X, Qin Y , et al. Responses of alpine grassland on Qinghai-Tibetan Plateau to climate warming and permafrost degradation: a modeling perspective[J]. Environmental Research Letters, 2014,9(7):074014
doi: 10.1088/1748-9326/9/7/074014
[52] 方水良 . 现代控制理论及其MATLAB实践[M]. 杭州: 浙江大学出版社, 2005
[53] Jiang C, Zhang L B . Ecosystem change assessment in the Three-River headwater region, China: patterns, causes, and implications[J]. Ecological Engineering, 2016,93:24-36
doi: 10.1016/j.ecoleng.2016.05.011
[54] Jiang C, Li D Q, Wang D W , et al. Quantification and assessment of changes in ecosystem service in the Three-River headwaters region, China as a result of climate variability and land cover change[J]. Ecological Indicators, 2016,66:199-211
doi: 10.1016/j.ecolind.2016.01.051
[55] 陈德亮, 徐柏青, 姚檀栋 , 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015,60(32):3025-3035
[56] Che M L, Chen B Z, Innes J L , , et al. Spatial. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011[J]. Agricultural and Forest Meteorology, 2014, 189- 190:81-90
doi: 10.1016/j.agrformet.2014.01.004
[57] 黄麟, 曹巍, 徐新良 , 等. 西藏生态安全屏障保护与建设工程的宏观生态效应[J]. 自然资源学报, 2018,33(3):398-411
[58] Ye X, Liu G H, Li Z S , et al. Evaluation of ecological effectiveness of protected areas in Northwest China[J]. Chinese Geographical Science, 2017,27(2):259-272
[1] 吴芳营,游庆龙,谢文欣,张玲. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139.
[2] 罗小青,徐建军. 青藏高原大气热源及其估算的不确定性因素[J]. 气候变化研究进展, 2019, 15(1): 33-40.
[3] 乔德京, 王念秦, 李震, 周建民, 符喜优. 1980—2009水文年青藏高原积雪物候时空变化遥感分析[J]. 气候变化研究进展, 2018, 14(2): 137-143.
[4] 孔莹 王澄海. 全球升温1.5℃时北半球多年冻土及雪水当量的响应及其变化[J]. 气候变化研究进展, 2017, 13(4): 316-326.
[5] 段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.
[6] 向洋, 李维京. 春季中国西南降水与青藏高原及周边非绝热加热之间的关系[J]. 气候变化研究进展, 2016, 12(5): 422-431.
[7] 李红梅, 李林. 2℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J]. 气候变化研究进展, 2015, 11(3): 157-164.
[8] 崔鹏, 陈容, 向灵芝, 苏凤环. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014, 10(2): 103-109.
[9] 王敏 周才平 吴良 徐兴良 欧阳华. 2001—2010年青藏高原干湿格局及其影响因素分析[J]. 气候变化研究进展, 2012, 8(5): 320-326.
[10] 曲斌 康世昌 陈峰 张拥军 张国帅. 2006—2011年西藏纳木错湖冰状况及其影响因素分析[J]. 气候变化研究进展, 2012, 8(5): 327-333.
[11] 王朋岭 唐国利 曹丽娟 刘秋锋 任玉玉. 1981—2010年青藏高原地区气温变化与高程及纬度的关系[J]. 气候变化研究进展, 2012, 8(5): 313-319.
[12] 林伟立 汪君霞 朱彤. 极地与青藏高原地区NOX的冰雪来源[J]. 气候变化研究进展, 2011, 7(1): 1-7.
[13] 马丽娟;秦大河;卞林根;效存德;罗勇. 青藏高原积雪的脆弱性评估[J]. 气候变化研究进展, 2010, 6(05): 325-331.
[14] 王茉;徐柏青;邬光剑;杨威. 碳质气溶胶在藏东南冰芯中的记录[J]. 气候变化研究进展, 2010, 6(03): 175-180.
[15] 李林;陈晓光;王振宇;徐维新;唐红玉. 青藏高原区域气候变化及其差异性研究[J]. 气候变化研究进展, 2010, 6(03): 181-186.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao?Guoliang;Zhang?Xiaoye;?Wang?Yaqiang;et al.. Inventory?of?Black?Carbon?Emission?from?China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu?Xiaobin;Lin?Weili;?Wang?Tao;et al.. Long-term?Trend?of?Tropospheric?Ozone?over?the?Yangtze?Delta?Region?of?China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao?Qingxian;?Du?Wupeng;?Lu?Shiqing;et al.. Methane?Emission?from?Municipal?Solid?Waste?Treatments?in?China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

? Shared ??
? Discussed ??
京ICP备11008704号-4
版权所有 ? 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn